Counting in binary: The 16 Card Trick ${ }^{1}$

The Trick (basic)

1. The participant chooses a random card from a deck of 16 , memorises it, replaces it, and shuffles the deck as much as desired.
2. The dealer creates two face-up piles of eight cards, dealing the top card onto the left, then right deck and repeating until all the cards are gone.
3. The participant then points to which pile contains the chosen card.
4. The dealer then re-stacks the piles into a new deck putting the pile that contains the participant's card in the first round of steps 2-4 at the bottom (at next repeat of 2-4 on top, then at the bottom and at last repeat on top)
5. Steps 2-4 are repeated three times, done 4 times in total (re-stack pile with chosen card as bottom, top, bottom, and finally top).
6. The dealer then flips over 5 cards from the top and reveals the 6 th card to be the original chosen card.

The Trick (advanced)

1. The participant chooses a random card from a deck of 16 , memorises it, replaces it, and shuffles the deck as much as desired. The participant also states a random number between 1 and 16 (call this number n).
2. The dealer creates two face-up piles of 8 cards, dealing the top card onto the left, then right deck and repeating until all the cards are gone.
3. The participant then points to which pile contains the chosen card.
4. The dealer then re-stacks the piles into a new deck. The dealer must maintain the order of the specific piles themselves however.
5. Steps 2-4 are repeated three times.
6. The dealer then flips over n-1 cards from the top and reveals the nth card to be the original chosen card.

For the advanced version of the 16 card trick you need to count in binary (see overleaf). Suppose $n=6$ as in the basic version. Then write $n-1=5$ in binary which is $101=0101$ (you can add as many zeros to the left as you want). Reading 0101 from the right tells you how to re-stack ($1=$ bottom, $0=$ top). So, you re-stack the pile with chosen card at bottom, then top, then bottom, then top.

[^0]
Counting in binary

In our usual way of writing numbers (the decimal system) we use 10 digits:

$$
0,1,2, \ldots, 9 .
$$

In the binary system we use 2 digits: $\boldsymbol{0}$ and $\mathbf{1}$ ("bi" means "two" as in bicycle, binoculars...)

In our usual (decimal system) we count one, two, three, ..., nine and write $0,1,2, \ldots, 9$. Having used up all digits the next numbers ten, eleven, twelve... nineteen are written as $10,11,12,13, \ldots, 19$. We may write zeros to the left without changing the meaning of the numbers. So, decimal counting goes as $000,001,002, \ldots 007,008,009$, (rightmost digit is reset to zero, and the digit to its left is incremented)
$010,011,012, \ldots$
$090,091,092, \ldots 097,098,099$, (rightmost two digits are reset to zeroes, and next digit is incremented)
$100,101,102, \ldots$
In the binary system we count similarly as follows (using only digits 0 and 1): 0000,

0001, (rightmost digit starts over, and next digit is incremented)
0010, 0011, (rightmost two digits start over, and next digit is incremented)
$0100,0101,0110,0111$, (rightmost three digits start over, and the next digit is incremented)
$1000,1001,1010,1011,1100,1101,1110,1111 \ldots$

decimal	0	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$	9	10	11	12	13	14	15
binary	0	$\mathbf{1}$	$\mathbf{1 0}$	11	$\mathbf{1 0 0}$	101	110	111	$\mathbf{1 0 0 0}$	1001	1010	1011	1100	1101	1110	1111

For instance, the decimal 5 is 101 in binary, and 11 in decimal is 1011 in binary. What is the usual (decimal) 21 in binary?

[^0]: ${ }^{1}$ The 27 card trick is based on ternary numbers.

