Prime numbers

A **prime number** (or a prime) is a natural number greater than 1 that cannot be formed by multiplying two smaller natural numbers. A natural number greater than 1 that is not prime is called a **composite number**. For example, 5 is prime because the only ways of writing it as a product, 1×5 or 5×1 , involve 5 itself. However, 6 is composite because it is the product of two numbers (2×3) that are both smaller than 6. Primes are used in cryptography to send secret messages over the internet and to make credit card payments secure. ¹ ²

Problem. Find all prime numbers smaller than 100 by crossing out all composite numbers on the grid below. The numbers left are the prime numbers.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

¹The largest known prime number (as of November 2018) is $2^{77,232,917} - 1$, a number with 23,249,425 digits. It was found by the Great Internet Mersenne Prime Search (GIMPS) in 2017.

 2 Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.