Dobble

The game Dobble was invented based on a finite projective plane. Junior Dobble is isomorphic to $\mathbb{P}^2(\mathbb{F}_5)$, and corresponds to a finite projective plane of order 6. Each line contains 6 points, each point is on 6 lines. In the game as sold, one card is missing.

The missing card is: {dog, cat, camel, fish, ladybird, horse}.

Each line corresponds to a different animal.

There are 31 different animal symbols, one for each line in the projective space $\mathbb{P}^2(\mathbb{F}_5)$. I have made the following choice of animal to point of $\mathbb{P}^2(\mathbb{F}_5)$. A different choice would correspond to an element of $PGL(3,\mathbb{F}_5)$, which has order 372000.

animal	orthogonal vector	animal	orthogonal vector
-	(0:0:1)	duck	(1:1:1)
dog	\ /		'
elephant	(1:0:0)	parrot	(1:1:2)
lion	(4:0:1)	crocodile	(1:1:3)
rabbit	(2:0:1)	octopus	(1:1:4)
$_{ m tiger}$	(3:0:1)	shark	(1:1:0)
whale	(1:0:1)	penguin	(3:1:1)
kangaroo	(0:1:1)	zebra	(3:1:2)
rooster	(0:3:1)	crab	(3:1:3)
hippo	(0:2:1)	sheep	(3:1:4)
tortoise	(0:4:1)	bear	(3:1:0)
cow	(0:0:1)	horse	(2:1:1)
$\operatorname{dolphin}$	(4:1:0)	fish	(2:1:2)
gorilla	(4:1:1)	cat	(2:1:3)
snake	(4:1:2)	camel	(2:1:4)
frog	(4:1:3)	ladybird	(2:1:0)
owl	(4:1:1)		
Fig. the "eat" line consists of points $(x \cdot y \cdot z)$ with $y = 2z$			

E.g. the "cat" line, consists of points (x:y:z) with y=2z-2x, i.e., $(x,y,z)\cdot(2,1,-2)=0$ meaning "cat" is the line orthogonal to $(2:1:-2)\equiv(2:1:3)\equiv(4:2:1)$.

You can work out the point on $\mathbb{P}^2(\mathbb{F}_5)$ corresponding to your card by just considering two of the animals on it. E.g., the card containing gorilla (4:1:1) and cat (2:1:3) must be a point (x:y:z) with $4x + y + z \equiv 2x + y + 3z \equiv 0 \mod 5$. From this we get $x \equiv y + z$ (from first condition) and then $2y + 2z + y + 3z \equiv 3y \equiv 0$ (sub in second) so $y \equiv 0$, and $x \equiv z$, so (up to scaling) the point is (1:0:1).

This shows the 6 families of "parallel" lines. Note that "parallel" here means not meeting in the copy of $\mathbb{F}^2_5 \subset \mathbb{P}^2(\mathbb{F}_5)$ given by $(x,y) \mapsto (x:y:1)$.